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++ Diffusion Model
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% GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
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GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models

Alex Nichol © Prafulla Dhariwal® Aditya Ramesh~ Pranav Shyam Pamela Mishkin Bob McGrew
Ilya Sutskever Mark Chen

Abstract

Diffusion models have recently been shown to
generate high-quality synthetic images, especially
when paired with a guidance technique to trade
off diversity for fidelity. We explore diffusion
maodels for the problem of text-conditional im-
age synthesis and compare two different guid-
ance strategies: CLIP guidance and classifier-free
guidance. We find that the latter is preferred by
human evaluators for both photorealism and cap-
tion similarity, and often produces photorealistic
samples. Samples from a 3.5 billion parameter
text-conditional diffusion model using classifier-
free guidance are favored by human evaluators to
those from DALL-E, even when the latter uses
expensive CLIP reranking. Additionally, we find
that our models can be fine-tuned to perform im-
age inpainting, enabling powerful text-driven im-
age editing. We train a smaller model on a fil-
tered dataset and release the code and weights at
https://github.com/openai/glide-text2im.

their corresponding text prompts.

On the other hand. unconditional image models can syn-
thesize photorealistic images (Brock et al., 2018; Karras
et al., 2019a:b; Razavi et al., 2019), sometimes with enough
fidelity that humans can’t distinguish them from real images
(Zhou et al., 2019). Within this line of research, diffusion
maodels (Sohl-Dickstein et al., 2015; Song & Ermon, 2020b)
have emerged as a promising family of generative models,
achieving state-of-the-art sample quality on a number of
image generation benchmarks (Ho et al., 2020; Dhariwal &
Nichol, 2021; Ho et al., 2021).

To achieve photorealism in the class-conditional setting,
Dhariwal & Nichol (2021) augmented diffusion models
with classifier guidance, a technique which allows diffusion
models to condition on a classifier’s labels. The classifier
is first trained on noised images, and during the diffusion
sampling process, gradients from the classifier are used
to guide the sample towards the label. Ho & Salimans
(2021) achieved similar results without a separately trained
classifier through the use of classifier-free guidance. a form
of guidance that interpolates between predictions from a

Hot= #910] O|0|X|0f & HSEE=F US0F

. 4

“a hedgehog using a
calculator”

“a corgi wearing a red bowtie
and a purple party hat™




N

Text to Image Diffusion

Conditional Diffusion Models

 Imagen : Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
=2 379| photorealismilt 72 72| 2101 O[GHE 2= text-to-image 22

LLMC| EIIAE QIH|H0| text-to-image EF40]| IHR S0 |2 F KA |

Photorealistic Text-to-Image Diffusion Models

with Deep Language Understanding

Daota Mining
Quallity Analytics

Chitwan Saharia’, William Chan’, Saurabh Saxena', Lala Li| Jay Whang!,
Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan,
S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans,

Jonathan Ho', David J Fleet!, Mohammad Norouzi*

{sahariac,williamchan,morouzi}@google.com
{srbs,lala, jwhang, jonathanho,davidfleet}@google.com

Google Research, Brain Team
Toronto, Ontario, Canada

Abstract

We present Imagen, a text-to-image diffusion model with an unprecedented degree
of photorealism and a deep level of language understanding. Imagen builds on
the power of large transformer language models in understanding text and hinges
on the strength of diffusion models in high-fidelity image generation. Our key
discovery is that generic large language models (e.g. T5), pretrained on text-only
corpora, are surprisingly effective at encoding text for image synthesis: increasing
the size of the language model in Imagen boosts both sample fidelity and image-
text alignment much more than increasing the size of the image diffusion model.
Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset,
without ever training on COCO, and human raters find Imagen samples to be on par
with the COCO data itself in image-text alignment. To assess text-to-image models
in greater depth, we introduce DrawBench, a comprehensive and challenging
benchmark for text-to-image models. With DrawBench, we compare Imagen with
recent methods including VQ-GAN+CLIP, Latent Diffusion Models. GLIDE and
DALL-E 2, and find that human raters prefer Imagen over other models in side-by-
side comparisons, both in terms of sample quality and image-text alignment. See
imagen.research.google for an overview of the results.

Sprouts in the shape of text ‘Imagen’ coming out of a
fairytale book.

A cute corgi lives in a house made out of sushi.




Bl Stable Diffusion

% High-Resolution Image Synthesis with Latent Diffusion Models
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By decomposing the image formation process into a se-
quential application of denoising autoencoders, diffusion
models (DMs) achieve state-of-the-art synthesis results on
image data and beyond. Additionally, their formulation al-
lows for a guiding mechanism to control the image gen-

- - '
eration process without retraining. However, since these - = P e N i ™
models typically operate directly in pixel space, optimiza- 7 ; (',?' : “:} LATENT O E— L ATENT

tion of powerful DMs often consumes hundreds of GPU N
days and inference is expensive due to sequential evalu-
ations. To enable DM training on limited computational
resources while retaining their quality and flexibility, we
apply them in the latent space of powerful pretrained au-

“A street sign that reads
s ¥ $hs s | 35 Ml DIFFUSION
‘j "l) l) l} ﬁ I) 4 )) Latent Diffusion : g DlFFU|S|0N
Figure 1. Boosting the upper bound on achievable quality with
less agressive downsampling. Since diffusion models offer excel-

N

toencoders. In contrast to previous work, training diffusion
models on such a representation allows for the first time
to reach a near-optimal point between complexity reduc-
tion and detail preservation, greatly boosting visual fidelity.
By introducing cross-attention layers into the model archi-
tecture, we turn diffusion models into powerful and flexi-
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lent inductive biases for spatial data, we do not need the heavy spa-
tial downsampling of related generative models in latent space, but
can still greatly reduce the dimensionality of the data via suitable
autoencoding models, see Sec. 3. Images are from the DIV2K [ ]
validation set, evaluated at 5127 px. We denote the spatial down-
sampling factor by f. Reconstruction FIDs [2%] and PSNR are
calculated on ImageNet-val. [ | 7]; see also Tab. 8.

“An oil painting

of a space shutitle”
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I Needs for Controllable Diffusion Model
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I Needs for Controllable Diffusion Model

Conditional Diffusion Models

% Controllable Diffusion Model
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Il Controllable Diffusion Models

*dabbing
¢ Motivation

« Text prompt : “An astronaut dabbing, cartoon style”
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Il Controllable Diffusion Models

% Motivation
Okay, but how?
- training from scratch

- fine tuning light-weight adapters on frozen pretrained T2I diffusion models

Desired image Generated image
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< Adding Conditional Control to Text-to-Image Diffusion Models (2023, ICCV)
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Adding Conditional Control to Text-to-Image Diffusion Models

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala
Stanford University

anyirao, maneesh}@cs. stanford.edu

.

Input Canny edge

Input human pose Default “chef in kitchen” “Lincoln statue”
Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges
(top), human pose (bottom), efc., to control the image generation of large pretrained diffusion models. The default results use
the prompt “a high-quality, detailed. and professional image”. Users can optionally give prompts like the “chef in kitchen”.
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< Adding Conditional Control to Text-to-Image Diffusion Models (2023, ICCV)
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ControlNet

% Adding Conditional Control to Text-to-Image Diffusion Models (2023, ICCV)
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%+ Technical Method
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% Results

»  Sk5E conditions HIEOZ TES04XI 0|0|X]

»  Default prompt : “a high-quality, detailed, and professional image”
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B ControlNet

Control pretrained large diffusion models to support additional input conditions

* Results
Controlling Stable diffusion with various conditions without prompts

Sketch Normal map Depth map Canny[!/]edge M-LSD[ ‘]line HED["!]edge ADE20k["]seg. Human pose

.....
'!s‘.g'.v'
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% Conclusion
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% Composer : Creative and Controllable Image Synthesis with Composable Conditions (2023, ICML)
6= multi conditional diffusion model
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Composer: Creative and Controllable Image Synthesis with
Composable Conditions

Lianghua Huang ' DiChen' Yu Lin'

Abstract

Recent large-scale generative models learned on
big data are capable of synthesizing incredible
images yet suffer from limited controllability.
This work offers a new generation paradigm
that allows flexible control of the output im-
age, such as spatial layout and palette, while
maintaining the synthesis quality and model
creativity. With compositionaliry as the core idea,
we first decompose an image into representative
factors, and then train a diffusion model with
all these factors as the conditions to recompose
the imput. At the inference stage, the rich
intermediate representations work as composable
elements, leading to a huge design space (ie,
exponentially proportional to the number of
decomposed factors) for customizable content

Yujun Shen® Deli Zhao' Jingren Zhoun'

produce photorealistic and diverse images (Ramesh et al.,

2022; Saharia et al., 2022; Rombach et al., 2021; Yu
et al,, 2022; Chang et al., 2023). To further achieve

customized generation, many recent works extend the text-
to-image models by introducing conditions such as segmen-

tation maps (Rombach et al., 2021; Wang et al., 2022b;

Couairon et al., 2022), scene graphs (Yang et al., 2022),
sketches (Voynov et al., 2022), depthmaps (stability.ai,
2022), and inpainting masks (Xie et al., 2022; Wang et al.,

20224a), or by finetuning the pretrained models on a few
subject-specific data (Gal et al., 2022; Mokady et al., 2022;
Ruiz et al., 2022). Nevertheless, these models still provide
only a limited degree of controllability for designers when
it comes to using them for practical applications. For
example, generative models often struggle to accurately

produce images with specifications for semantics, shape,

style, and color all at once, which is common in real-world
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% Compositionality (-
»  Controllable diffusion model2| 342 ‘Compositionality’ = &2
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class UNet(nn.Module):

Geons Objects 02 A e

super{UNet, self). init_ ()

det CBR2d(in_channels, out_channels, kernel size=3, stride=1, padding=1, bias=True):
{ layers = []

layers += [nn.Conv2d(in_channels=in_channels, out channels=out_channels,
kernel s kernel size, stride=stride, padding=padding,
bias=bias)]

(D W9

layers += [nn.BatchNorm2d(num features=out channels)]
layers += [nn.RelLU{)]

cbr = nn.5equential(*layers)

return chr
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«% Compositionality (E+4A)
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1. Introduction
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“The infinite use of finite means”
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»  Composition
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% Method
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** Method
«  Composition : Representation?| £igtC = £E{ 0|0|XIZ recompose(Ri=A) 5k= THA|
1) Global conditioning : O|O0|X| XX|H| CHSH <A 5 thla
. e o . = Multi-head
2  Localized conditioning : O|0|X| L £ BHO|Lt 14 40| Chigt =24 Cross-Attention
3) Joint training strategy :
Scale, Shift
Local Condition uﬂanm
In::lui.Lag.r'Er

#

Depth map Segmentation

L W=
3

=

3%,
soncat T“ LIm

Convolution

(unshared)

. Molsy Localized
Masking Image Conditions

Q.. Daota Mining
ob Quallity Analytics




- Composer

«  Composition : Representation®] 25O 2 2E{ 0|0 X|Z recompose(Ri+A) Sh=THA|
1) Global conditioning : O[O|X| XM&|0f| CHEt =
?)  Localized conditioning : O|0]X| L A HHO|L} A QA0 CHEH=ZA
3) Joint training strategy

Q.. Daota Mining
ob Quallity Analytics



Composer

s Results

content m=m
(————aan

,__sketch intensity

- masking

3d model of painting of 3d model of aconfused ancient makeup a9 years old
a cat adog adog grizzly bear woman kid

Q.. Daota Mining
ob Quallity Analytics



Composer
Creative and Controllable Inage Synthesis with Composable Conditions

Results
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(a) Palette-based colorization.
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“photograph of a zebra” “photograph of zebras” . “photo of a tiger” “photo of a bear” “a landscape photo, sunshine, summer”

(c) Image translation.
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Composer
Creative and Controllable Inage Synthesis with Composable Conditions

% Results
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% Conclusion
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% Uni-ControlNet : All-in-One Control to Text-to-Image Diffusion Models (2023, NeurlPS)
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Uni-ControlNet: All-in-One Control to
Text-to-Image Diffusion Models

Shihao Zhao' Dongdong Chen” Yen-Chun Chen
The University of Hong Kong Microsoft Microsoft
shzhao@cs. hku. hk cddlyf@gmail.com  yen-chun.chen@microsoft.com
Jianmin Bao Shaozhe Hao Lu Yuan
Microsoft The University of Hong Kong Microsoft
jianmin.baoBmicrosoft.com szhao@cs. hku. hk luyuan@microsoft. com

Kwan-Yee K. Wong*
The University of Hong Kong
kykwong®cs . hku. hk

Abstract

Text-to-Image diffusion models have made tremendous progress over the past two
years, enabling the generation of highly realistic images based on open-domain
text descriptions. However, despite their success, text descriptions often struggle to
adequately convey detailed controls, even when composed of long and complex
texts. Moreover, recent studies have also shown that these models face challenges

in understanding such complex texts and generating the corresponding images.

Therefore, there is a growing need to enable more control modes beyond text
description. In this paper. we introduce Uni-ControlNet. a unified framework that
allows for the simultaneous utilization of different local controls (e.g., edge maps,
depth map, segmentation masks) and global controls (e.g., CLIP image embeddings)
in a flexible and composable manner within one single model. Unlike existing
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¢ Results

* FID score@} LIt S G/t A H0M =2 s

Table 2: FID on different controllable diffusion models. The best results are in bold.

Canny MLSD HED Sketch Pose Depth Segmentation Style\Content

ControlNet 18.90 3136 2659 22119 2784 21.25 23.08 31.17
GLIGEN 24.74 - 28.57 - 24.57 21.46 27.39 25.12
T2I-Adapter  18.98 - - 18.83 2957 21.35 23.84 28.86
Ours 17.79  26.18 17.86 20.11 26.61 21.20 23.40 23.98

Table 5: Quantitative evaluation of the controllability. T'he best results are 1n bold.

Canny  MLSD HED Sketch Pose Depth  Segmentation  Style'\Content

(SSIM) (SSIM) (SSIM) (SSIM) (mAP) (MSE) (mloU) (CLIP Score)
ControlNet 04828  0.7455 04719 0.3657 04359 87.57 0.4431 0.6765
GLIGEN  0.4226 - 0.4015 - 0.1677 88.22 0.2557 0.7458
T21-Adapter  0.4422 - - 0.5148 0.5283 89.82 0.2406 0.7078
Ours 04911 06773  0.5197  0.5923 02164 91.05 0.3160 0.7753
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